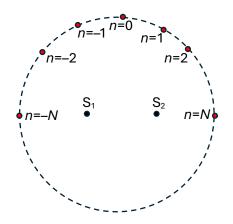
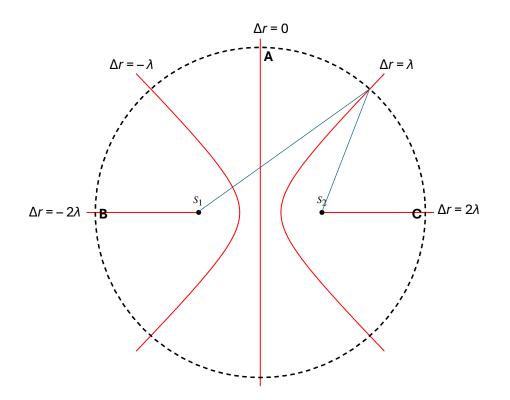

Teacher notes Topic C

An extension of problem 14.32 in the textbook.


Two sources S_1 and S_2 emit identical waves in phase. The distance *d* between the sources is $d = N\lambda$ where λ is the wavelength. How many maxima are observed along a circle centered at the midpoint of the line joining the sources?

The path difference at a point P on the circle is $\Delta r = S_1 P - S_2 P$. A maximum is observed when this path difference is equal to an integral multiple of the wavelength: $\Delta r = n\lambda$. The maximum magnitude of the path difference is observed when P is at B or C. It equals

 $|S_1B - S_2B| = |S_1C - S_2C|\left(R + \frac{d}{2}\right) - \left(R - \frac{d}{2}\right) = d$ where R is the irrelevant circle radius.


Since this is the maximum possible path difference we have that $|\Delta r| = |n| \lambda \le d$. Since $d = N\lambda$ we then have $|n|\lambda \le N\lambda$ and so $|n| \le N$. Hence n = -N, -(N-1), \cdots , -1, 0, 1, \cdots , (N-1), N, i.e. 2N+1 values.

IB Physics: K.A. Tsokos

Including the symmetrical points in the lower half of the circle, this means that we have a total of (2N+1) + (2N+1) - 2 = 4N points on the circle where maxima are observed. (The -2 corrects for the double counting of the maxima at $n = \pm N$.)

This is illustrated below for the case N = 2, i.e. $d = 2\lambda$. The red lines and curves (hyperbolas) are lines of constant path difference.

We see that there are 8 points where maxima are observed, consistent with the general result: $4N = 4 \times 2 = 8$.

In the textbook problem we had $d = 5\lambda$ and so 20 maxima.